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1 Introduction

Introduced by Jean Leray around the second world war, spectral sequences have become

a ubiquitous algebraic tool. They were first used to aid in the computation of sheaf coho-

mology, but it was then realised they could be applied to many other algebraic problems,

especially in topology. In the following years spectral sequences were formalised, through

the languages of homological algebra and category theory, to become an essential part of

many mathematicians toolbox.

It was around a similar time that group homology was being formally defined. Following

from the homology of spaces, mathematicians worked to see if they could extract infor-

mation about other objects with similar constructions. This lead to the creation of group

cohomology and homology, where spectral sequences became a vital calculation tool.

This projects main aim is to be able to work with spectral sequences and group homology

in the context of a recent paper ‘Euler class groups and the homology of elementary and

special linear groups’ by M.Schlichting [SCH]. In our work with this paper we will re-prove

one of its results with an alternate method, and use the proof techniques of Schlichting to

re-prove an older result that was essential in the study of homology stability and K-theory.

I want to guide the reader through the subjects at hand, giving detail and examples where

needed and culminating in our work with Schlichting’s paper.

1.1 Assumed Knowledge

We assume the reader has knowledge of some basic category theoretic terminology (basic

definitions, see [AWO]), and introductory homological algebra (see [ROT] and [WEI])

including knowledge of projective modules, chain complexes, tensor products, and the

homology of a chain complex. No knowledge of spectral sequences or group homology is

assumed, though our definition of group homology is only brief. For group homology we

follow [BRO] and for spectral sequences we introduce them following [ROT] and then later

use [BRO] and [KNU].

2 Category Theory and Homological Algebra

We start with some categorical and homological constructs and worked examples. This

chapter forms the foundational material for the later chapters.
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2.1 Derived Functors

[ROT, §6.2] Given two categories C and D, with enough projectives and a right exact

covariant functor F : C → D we can construct what we call the left derived functors of

F . Derived functors play an integral role in many areas of mathematics, and allow us to

define group homology (and cohomology).

Definition 1. For an object X ∈ C, and a projective resolution P• → X, apply F to P•

to obtain the chain complex

· · · → FP1 → FP0 → 0.

Denote the n’th homology of this complex as LnF (X) and call this the n’th left derived

functor of F applied to X.

We can do this for any object in C, and we know a morphism f : X → Y will extend to a

map of projective resolutions (proved analogous to §3.3 lemma 1, or [ROT, Thm. 6.16])

and so we have our left derived functor LnF : C → D. In an analogous way we can also

define right derived functors RnF of a left exact functor.

In particular if we work over a ring R and fix a left R-module M , we get the covariant

right exact functor F := −⊗RM , which maps from right R-modules to right R-modules.

Similarly can get the functor contravariant left exact functor G := HomR(−,M).

Definition 2. We denote the specific derived functors of these functors as TorRn (N,M) :=

LnF (N) and ExtnR(N,M) := RnG(N).

Note that there are functors N ⊗R − and HomR(N,−) and taking a different type of

resolution we can arrive at the same derived functors Tor and Ext.

[ROT, Thm. 6.27] Right and left derived functors give useful long exact sequences, sim-

ilar to the long exact sequence associated to a short exact sequence of chain complexes.

Consider a short exact sequence of modules

0→ A→ B → C → 0

then for a functor F as above, we have a long exact sequence

· · · → L1F (A)→ L1F (B)→ L1F (C)→ F (A)→ F (B)→ F (C)→ 0,

and when F gives a right derived functor we get

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ · · · ,

which can be useful tools for calculation.

[ROT, Thm. 7.2, Corollary 7.25] These functors give alternate definitions of projective,

injective and flat modules. We can define a projective module P as one that makes
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Hom(P,−) an exact functor, i.e. ExtnR(P,−) = 0 for all n > 0. Similarly we can define

injective modules using Hom(−, P ) and flat modules with the exactness of P ⊗ − and

hence the vanishing of all Torn(P,−) for n > 0.

2.2 Calculating with Tor and Ext

So to see some computations with these functors lets first consider the simplest case

TorR0 (N,M) and Ext0R(N,M). Using the canonical free resolution of N

0→ F1
f1−→ F0

f0−→ N → 0,

we have an exact sequence

F1 ⊗RM
f1⊗id−−−→ F0 ⊗RM

f0⊗id−−−→ N ⊗RM → 0.

So by the first isomorphism theorem we obtain

N ⊗RM ∼=
F0 ⊗RM

Ker(f0 ⊗ id)
∼=

F0 ⊗RM
Im(f1 ⊗ id)

.

Now to calculate TorR0 we need to consider the 0th homology of our tensored chain, which

is of course F0 ⊗RM/ Im(f1 ⊗ id). By the above isomorphism we know that this gives us

TorR0 (N,M) = N ⊗RM . We can follow the dual method for Ext to see that we have the

exact sequence

0→ HomR(N,M)
a∗−→ HomR(F0,M)

b∗−→ HomR(F1,M)

and then taking the 0’th homology from

HomR(F1,M)
b∗←− HomR(F0,M)← 0

we get that Ext0R(N,M) = Ker(b∗) = Im(a∗) ∼= HomR(N,M).

For a more concrete example let’s work over R = Z and calculate TorZ1 (Z/nZ,Z/mZ).

Using the free resolution

0→ Z ×n−−→ Z→ Z
nZ
→ 0,

we need to consider the 1’st homology of the chain

0→ Z⊗ Z
mZ

×n⊗id−−−−→ Z⊗ Z
mZ
→ 0.

This gives TorZ1 (Z/nZ,Z/mZ) = Ker(×n ⊗ id : Z ⊗ Z/mZ → Z ⊗ Z/mZ). Using the
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standard isomorphism Z⊗G ∼= G for any group G, we see that

TorZ1 (Z/nZ,Z/mZ) = Ker(×n : Z/mZ→ Z/mZ)

=
Z

gcd(m,n)Z
.

2.3 Tensoring a Chain with a Projective Module

We now explore what happens to the homology when a chain is tensored with a projective

module. This will help us later when we are working with the Hochschild-Serre spectral

sequence.

Theorem 1. For a chain complex C• of left R-modules, and P a projective right R-module

we have that Hn(P ⊗R C•) ∼= P ⊗R Hn(C•).

Proof. First in the case of P a free R-module and a chain C•, since P = Rn we have

P ⊗R Hn(C•) ∼= Hn(P ⊗R C•) by using the fact that R ⊗R C• ∼= C• and that homology

commutes with direct sums.

Now for P a projective R-module, we know P is a direct summand of some free R-module

F . As such we have inclusion and projection maps

P
i
↪−→ F

r
� P,

with ri = idP . From its functoriality, we can induce (ri)∗ on homology such that (ri)∗ =

r∗i∗ = id∗. We can also map φ : P ⊗Hn(C•)→ Hn(P ⊗C•) by sending p⊗ [x] 7→ [p⊗ x],

giving the following commutative diagram

P ⊗Hn(C•) F ⊗Hn(C•) P ⊗Hn(C•)

Hn(P ⊗ C•) Hn(F ⊗ C•) Hn(P ⊗ C•),

i∗ ⊗ id r∗ ⊗ id

(i⊗ id)∗ (r ⊗ id)∗

φ∼=φ

where the top and bottom rows both compose to the identity, and the middle map is an

isomorphism from the free module case. The commutativity allows us to construct a two

sided inverse for φ, and so φ is an isomorphism, giving P ⊗Hn(C•) ∼= Hn(P ⊗ C•).

Example: Suppose we want Tor
Z/12Z
n (Z/6Z,Z/3Z). We know Z/12Z ∼= Z/4Z⊕Z/3Z, so

Z/3Z is a projective Z/12Z-module. We have the resolution

· · · x2−→ Z/12Z x6−→ Z/12Z x2−→ Z/12Z� Z/6Z→ 0
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which we will call C• → Z/6Z. This has H0(C•) = Z/6Z and Hn(C•) = 1 otherwise. So

we can easily calculate our Tor values as homology commutes with our projective module.

So
TorZ/12Zn (Z/6Z,Z/3Z) = Hn

(
C• ⊗Z/12Z Z/3Z

)
= Hn(C•)⊗Z/12Z Z/3Z

=

Z/6Z⊗Z/12Z Z/3Z n = 0,

Z/3Z n > 0.

2.4 Simplicial Objects

[WEI, §8.1] Another concept we will need is that of a simplicial object. We can generalise

the idea of a simplex to any category by selecting certain objects and then defining face

and degeneracy maps that behave as we would expect them to in a geometric setting.

For a category C, then for each n ≥ 0 we select objects An ∈ C along with ‘face maps’

dn : An → An−1 and ‘degeneracy maps’ σn : An → An+1 which interact in the following

way:

didj = dj−1di for i < j

σiσj = σjσi+1 for i ≤ j,

and:
diσj = σj−1di for i < j

diσj = id for i = j, j + 1

diσj = σjdi−1 for i > j + 1.

It should be noted that you can also think of a simplicial object as a functor F : ∆→ C

where the category ∆ has objects the sets {0, . . . , n} and specially defined morphisms

which then factor in a way analogous to our face and degeneracy maps. For more detail

on this see [WEI, §8].

2.5 The Dold Kan Correspondence

[GOE, §III.2 prop. 2.2] We also have a way to obtain a simplicial object from a projective

resolution, which we will make use of in our study of Schlichting’s paper. The ‘Dold Kan

Correspondence’ is a natural correspondence between two categories, which we can use to

get a simplicial abelian group (i.e. a simplicial object from the category of abelian groups)

from a chain complex.

Given a chain complex (Pn)n≥0 of positively indexed abelian groups we can define a sim-

plicial abelian group T by

Tn :=
⊕

[n]→[k] surjective

Pk
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where by [n] we mean the ordered set {0, 1, 2, . . . , n}. We then get our maps from Tn → Tm

by starting with an order preserving map θ : [m] → [n] and for each indexing element

σ : [n] → [k] of Tn, we split the composition σ ◦ θ into a composition of an epimorphism

and a monomorphism (this is called epi-monic factorisation, see [WEI lemma 8.1.2] for

more detail) [m]
q
� [s]

i
↪−→ [k] which now lets us map Pk

i∗−→ Ps ↪→ Tm. We do this for

each indexing element σ to end up with a map θ∗ : Tn → Tm. (For more detail on how

to construct i∗ see [GOE, §III.2], just after the proof of Theorem 2.1. For this project we

will not need such details).

3 Group Homology

We now take some time to study in depth some particular constructions and results of

group homology theory which we will need for Schlichting’s paper. Note the common

shorthand that when we have a group G, the term G-module means a ZG-module.

3.1 Defining Group Homology

[BRO, §II.2] First we explore the different ways in which group homology can be defined.

Each definition has its own merits depending on what calculations you are wanting to

perform.

Definition 3. For G and M a (left) G-module, we define the nth homology group of G as

Hn(G,M) := TorZGn (Z,M)

Another way to define Hn(G,M) is to use the co-invariants of M .

Definition 4. For M a G-module, the co-invariants of M is the object MG which is

defined to be M quotiented out by {gm−m : g ∈ G,m ∈M}.

There is also a natural isomorphism MG
∼= Z⊗ZGM by [m] 7→ 1⊗m, with Z as a trivial

right G-module and M still as a left G-module. For F a chain complex of G-modules

it is then natural to denote FG as the chain complex with (FG)i = (Fi)G. In particular

for F• → Z a projective G-resolution we can then say Hn(G,M) = Hn((F ⊗M)G) =

Hn(F ⊗GM) where the first tensor product is over Z.

Example: As a simple first example H0(G,M) = TorZG0 (Z,M) = Z⊗ZGM = MG.

Note that we can make similar definitions using Ext instead of Tor and arrive at group

cohomology, though for this project it will not be needed.
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3.2 A Standard Projective Resolution

[BRO, §I.5] For working with group homology it would be good to have a standard ZG-

projective resolution of Z that we can work with. For a group G, we can define a projective

ZG-resolution EG• → Z, with EGn := Z[Gn+1]. These are ZG-modules using theG-action

g · (g0, . . . , gn) := (g0g, . . . , gng). We then have natural maps

dn : EGn → EGn−1

(g0, . . . , gn) 7→ (g0, . . . , gi−1, gi+1, . . . , gn)

which we can then assemble into a differential

∂n =

n∑
i=0

(−1)idi : EGn → EGn−1.

We see ∂2 = 0 with a standard computation analogous to [HAT, Lemma 2.1], and we use

the augmentation map ε : EG0 → Z, to get that EG• is certainly a chain complex. To

see the projective resolution EG• → Z is exact it remains to check Ker ∂n ⊆ Im ∂n+1 and

Ker ε ⊆ Im ∂1, which I have calculated in more detail than [BRO, §I.5]. Firstly note that

if (g0, . . . , gn) ∈ Ker ∂n then we can see that

(g0, . . . , gn) =

(g0, g0, g2, g2, . . . , gn−1, gn−1) n odd

(g0, 0, g2, 0, . . . , 0, gn) n even

and so we then get

(g0, . . . , gn) =

∂n+1(0, g0, 0, g2, . . . , 0, gn−1, 0) n odd

∂n+1(0, g0, 0, g2, . . . , 0, gn−1) n even

so have Ker ∂n ⊆ Im ∂n+ 1 for all n, since the differentials extend linearly over sums of

these basis elements. Now finally, Ker ε =< (h)− (g) : h, g ∈ G > and ∂1(g, h) = (h)− (g)

so Ker ε = Im ∂1. It’s trivial to see Z = Im ε, and so we have an exact sequence. Finally

note the EGn are projective ZG-modules, as Z[Gi+1] ∼= ⊕i+1Z[G] so it is a free ZG-module.

Hence we have shown EG• → Z is a projective resolution of ZG-modules.

This resolution is functorial as for a group homomorphism f : G→ G′ we can get a chain

map Ef : EG• → EG′• by extending f over the tuples

Efn :EGn → EG′n

Efn(g0, . . . , gn) := (f(g0), . . . , f(gn)).

This will be useful when we want to explicitly calculate what an induced map on homology

does, as it can be unwieldy to work with a general projective resolution.
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[KNU, Appendix A] I’d also like to mention an alternative resolution which we will denote

F• → Z, where Fn is the free ZG-module generated by tuples ofG of the form [g1|g2| · · · |gn].

Again we assemble our differentials as ∂n :=
∑

(−1)idi where

di[g1| · · · |gn] =


g1[g2| · · · |gn] i = 0

[g1| · · · |gi−1|gi+1| · · · |gn] 0 < i < n

[g1| · · · |gn−1] i = n.

It should be noted there are other natural ways to get resolutions, such as resolutions that

repeat at a certain period, though in the end projective resolutions of a module are unique

up to homotopy, so we can pick which is easiest to calculate with.

3.3 The Functoriality of Group Homology

Functoriality is a very important aspect of any homology theory, and as such we now

examine the functoriality of group homology and give more detail to the construction

given in [BRO, §III.8].

Consider two pairs (G,M) and (H,L) with G, H groups, M a G-module, and L an H-

module. Now given a pair of maps (α, f) with α : G → H, f : M → L such that

f(gm) = α(g)f(m) for g ∈ G, m ∈M our goal is to induce a map H∗(G,M)→ H∗(H,L).

In order to do this I’ve combined the statements and proofs of [BRO, Lemma I.7.4], [BRO,

Lemma I.7.3] and [BRO, §I.7 (7.1)] to give the following simple lemma.

Lemma 1. For P• → Z and Q• → Z two ZG-projective resolutions of Z with differentials

{∂} and {∂′} respectively, we can extend the identity map id : Z → Z to a chain map

φ : P• → Q•.

Proof. First set φ0 = id and φk = 0 for k < 0 to give a chain map in degree 0. We proceed

by induction. Suppose that for all i ≤ n our φi is defined and satisfies ∂
′
iφi = φi−1∂i. That

gives the following commutative diagram

Pn+1 Pn Pn−1

Qn+1 Qn Qn−1

∂n+1 ∂n

∂
′
n+1 ∂

′
n

φn−1φn

where we then want to find a φn+1 : Pn+1 → Qn+1. By the commutativity of the diagram

we get that ∂
′
nφn∂n+1 = φn−1∂n∂n+1 = 0 and hence we have that Imφn∂n+1 ⊆ Ker ∂

′
n =

Im ∂
′
n+1. This allows us to exploit the projectivity of Pn+1 since we have
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Pn+1

Qn+1 Im ∂
′
n+1 0

∃φn+1 φn∂n+1

∂
′
n+1

where projectivity gives us existence of φn+1 such that ∂
′
n+1φn+1 = φn∂n+1 and so we have

found our extension to the chain map. So by induction we have the requisite φ : P• → Q•

extending the identity map.

To make use of this lemma, let P• be a projective ZG-resolution of Z and Q• be a projective

ZH-resolution of Z, then consider Q• as a complex of G-modules by restriction of scalars

along α. Our lemma now allows us to extend the identity map on Z to get a chain map

φ : P• → Q• where φ(gp) = α(g)φ(p) for g ∈ G and p ∈ P•, due to our restriction of

scalars along α.

Our φ can now be used to get φ ⊗ f : P• ⊗G M → Q• ⊗H L, extended linearly over

elementary tensors. I’ve calculated to following to show this too is a chain map. Take

some a⊗ b ∈ Pn+1⊗GM , and note that φ being a chain map gives ∂′φ = φ∂. We can now

calculate

(φn ⊗ f) ◦ (∂n+1 ⊗ idM )(a⊗ b) = (φn ⊗ f)(∂n+1a⊗ b)

= φn∂n+1(a)⊗ f(b)

= ∂′n+1φn+1(a)⊗ idL(f(b))

= (∂′n+1 ⊗ idL) ◦ (φn+1 ⊗ f)(a⊗ b)

to see that φ⊗ f commutes with the chains differentials and so will induce a well defined

map on homology, as required. We denote the induced map (α, f)∗ or just α∗ in cases

where its clear what the map f is.

Example : Consider a group and a normal subgroup H E G and M a G-module, and fix

an element g ∈ G. We can define a pair of maps (α, f) where α : H → H is conjugation

by g, and f : M → M is left multiplication by g. Note that for h ∈ H and m ∈ M we

have f(hm) = ghm = ghg−1gm = α(h)f(m) so our pair of maps can induce (α, f)∗ :

H∗(H,M)→ H∗(H,M).

In particular, given our projective resolution F• → Z, the identity map on Z extends

to a chain map φ : F• → F•, defined by φn(x) := gx for x ∈ Fn. Since for a ∈ G,

φn(ax) = gax = gag−1gx = α(a)φn(x), we see it’s compatible with α. So our map on

homology is induced by φ⊗ f which acts as (φn ⊗ f)(x⊗m) = gx⊗ gm.

It’s useful to use this induced map to define an action of G/H on Hn(H,M). For gH ∈
G/H we can then act on [x] ∈ Hn(H,M) by using the (α, f) pair, so gH · [x] := (α, f)∗([x])
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[BRO, Corollary III.8.2]. This will be a well defined as long as when restricted to H the

action is trivial.

[BRO, Prop. III.8.1] To see this lets fix an h ∈ H ⊆ G which yields an (α, f) as above.

Taking a ZH-resolution F• → Z and [x⊗m] ∈ Hn(H,M) we see that x⊗m ∈ Fn⊗HM , and

our extended chain map will act as x⊗m 7→ hx⊗hm. However since Fn⊗HM = (Fn⊗M)H

which is quotienting out by this exact diagonal action, so we see that the induced chain

map is the identity.

To show this quotient action is well defined, take gH = kH then ∃h ∈ H such that g = kh

and
(gH) · [x⊗m] = [gx⊗ gm]

= [khx⊗ khm]

= [kx⊗ km]

= (kH) · [x⊗m],

so our action is well defined. This action will be very useful later when we work with the

Hochschild-Serre spectral sequence.

3.4 the Pontryagin Map

We will now study a specific isomorphism that is needed to understand a proof [SCH,

Prop. 2.4] later. This requires quite a bit of technology and multiple new concepts which

I will introduce along the way.

[Bro, §V.2 and §V.5] First note that for a group G and commutative ring k (with trivial

G-action for simplification) we can collect together the Hn(G, k) into

H∗(G, k) =
⊕

Hn(G, k).

We can then add a product called the Pontryagin product, to turn H∗(G, k) into an anti-

commutative graded k-algebra. We obtain the product by composing two maps

Hp(G,M)⊗Hq(G,M)→ Hp+q(G×G,M ×M)→ Hp+q(G,M)

where for [fp⊗m1] ∈ Hp(G,M) and [fq⊗m2] ∈ Hq(G,M) we map (fp⊗m)⊗(fq⊗m2) 7→
(fp ⊗ fq) ⊗ (m1 ⊗m2) and then induce on the pair of maps (φ, f) where φ : G ×G → G

is the product in G and f : M ×M →M is the product in M .

Next we need a new algebraic object called the exterior algebra.

Definition 5. Let V be a k-module. The k-algebra
∧∗(V ) =

⊕
n

∧n(V ), is the quotient

of the tensor algebra T ∗(V ) = k ⊕ V ⊕ (V ⊗k V ) ⊕ · · · by the relation v ⊗ v. We denote

elements of
∧n(V ) as sums of elements of the form v1 ∧ · · · ∧ vn.

10



Example: For C3 as a C vector space with standard basis {e1, e2, e3}, we get
∧∗(C) =

C⊕
∧1(C3)⊕

∧2(C3)⊕
∧3(C3) a C-algebra. Where

∧1(C3) has basis {e1, e2, e3},
∧2(C3)

has basis {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} and
∧3(C3) has basis {e1 ∧ e2 ∧ e3} and any higher∧n(C3) vanish due to the relation v ⊗ v we have quotiented out by and the fact that C3

is only 3 dimensional. If viewed as an R vector space we would then have exterior powers

up to 6.

[BRO, V.6.1] The exterior algebra has the useful universal property that ‘If A∗ is a strictly

anti-commutative graded k-algebra then any k-module map V → A1 extends uniquely to

a k-algebra map
∧∗(V )→ A∗’.

If we could relate group homology to exterior algebras, we would be able to use our

understanding of exterior algebras to help us understand group homology. For an abelian

group G we know G ⊗ k ∼= H1(G) ⊗ k ∼= H1(G, k) so we have an isomorphism G ⊗ k →
H1(G, k) which extends by the universal property, to a k-algebra map ψ :

∧∗(G ⊗ k) →
H∗(G, k) which we call the ‘Pontryagin map’. We then have the following proposition.

Proposition 1 (BRO, V.6.4). The Pontryagin map is an isomorphism if every prime p

s.t. G has p-torsion is invertible in k.

Example: Q is a flat Z-module so H∗(Q) ∼=
∧∗(Q), as a module over a PID is flat iff it

is torsion free [ROT, Corollary 3.51].

We will now build up to proving this proposition, starting with the ‘Kunneth theorem’

which helps find the homology of a product of groups.

Theorem 2 (BRO, Corollary V.5.8). For G,G′ abelian groups and k a principal ideal

domain then there is a split exact sequence

0→
⊕
p+q=n

Hp(G, k)⊗kHq(G
′, k)→ Hn(G×G′, k)→

⊕
p+q=n−1

Tork1(Hp(G, k), Hq(G
′, k))→ 0.

We will later derive this exact sequence once we’ve developed spectral sequences. As the

sequence is split, we get the isomorphism

Hn(G×G′, k) ∼=

( ⊕
p+q=n

Hp(G, k)⊗k Hq(G
′, k)

)⊕ ⊕
p+q=n−1

Tork1(Hp(G, k), Hq(G
′, k))

 .

Example: Lets compute some of the homology of the Klein four group K4
∼= C2 × C2.

Once we work out the homology of C2 = {1, σ} we will have all the information we

need. To work out Hn(C2,Z) we have the standard ZC2-projective resolution of Z using

alternating multiplication by σ − 1 and 1 + σ

· · · σ−1−−→ ZC2
1+σ−−→ ZC2

σ−1−−→ ZC2
ε−→ Z→ 0

with ε the group ring augmentation map. Now by our definition of group homology we are

11



wanting to calculate Hn(C2,Z) := TorZC2
n (Z,Z), and so we apply −⊗ZC2 Z functor to our

projective resolution of Z. However we know for any G-module M that ZG ⊗GM ∼= M ,

so we are left with

· · · 0−→ Z ×2−−→ Z 0−→ Z→ 0.

This gives us that

Hn(C2,Z) =


Z/2Z n = 1, 3, 5, . . .

0 n = 2, 4, 6, . . .

Z n = 0.

We can repeat this calculation more generally, using Cn, and M a Cn-module. Knowing

that Cn = 〈σ〉 for some σ ∈ Cn, we can construct a free ZCn-resolution of Z

· · · σ−1−−→ ZCn
φ−→ ZCn

σ−1−−→ ZCn
ε−→ Z→ 0

where φ = 1 + σ + · · · + σn−1. Then since we are calculating TorZCnm (Z,M) we apply

−⊗ZCn M , and by the same isomorphism as before we end up with

· · · 0−→M
×n−−→M

0−→M → 0,

which gives our homology as

Hm(Cn,M) =


M/nM m = 1, 3, 5, . . .

n-torsion of M m = 2, 4, 6, . . .

M m = 0.

We can now return to our calculation of the homology of K4, using as shorthand notation

Hn := Hn(C2,Z), we can make use of the Kunneth theorem to see that

H1(K4,Z) =((H0 ⊗Z H1)⊕ (H1 ⊗Z H0))⊕ TorZ1 (H0, H0)

=(Z⊗Z Z/2Z)⊕ (Z/2Z⊗Z Z)⊕ 0

=Z/2Z⊕ Z/2Z,

or that

H2(K4,Z) =((H0 ⊗Z H2)⊕ (H2 ⊗Z H0)⊕ (H1 ⊗Z H1))⊕ (TorZ1 (H0, H1)⊕ TorZ1 (H1, H0))

=(Z⊗Z 0)⊕ (0⊗Z Z)⊕ (Z/2Z⊗Z Z/2Z)⊕ TorZ1 (Z,Z/2Z)⊕ TorZ1 (Z/2Z,Z)

=Z/2Z.

The last piece we need before we can prove Prop. 1, is how to define a ‘limit of groups’.

We start by defining a suitable indexing set to take our limit over.

Definition 6. For a set X with a preorder ≤ we call (X,≤) a directed set if for every
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a, b ∈ X we can find some c ∈ X such that a ≤ c and b ≤ c.

Example : So (Z,≤) is clearly a directed set, however so is its power set P(Z) using ⊆ as

the preorder.

Now for such a directed set X, if we are given a set of groups {Gα}α∈X along with

homomorphisms fαβ : Gα → Gβ for every α ≤ β in X, where these homomorphisms

satisfy that for α ≤ β ≤ γ in X then fβγfαβ = fαγ and fαα = id. With this set-up we can

now define lim−→Gα.

Definition 7. The group lim−→Gα is defined to be the quotient of the disjoint union tGα
by the relation that for g ∈ Gα and h ∈ Gβ then g ∼ h if and only if ∃γ such that

fαγ(g) = fβγ(h). With addition in lim−→Gα using these maps [g] + [h] := [fαγ(g) + fβγ(h)].

Example: Consider the directed set (Z,≤) mentioned above, indexing {Gi}i∈Z := {Zi}i∈Z
with the natural inclusions fij : Zi → Zj , for i ≤ j. Then we see that elements of our

lim−→Gα are equivalence classes of tuples of integers. So for instance we have [(1, 0, 1, 1)] ∼
[(1, 0, 1, 1, 0, 0)] and we can add, by lifting to a shared power of Z, [(1, 0, 1, 1)]+[(0, 0, 2, 2, 2, 0, 1)] =

[(1, 0, 3, 3, 2, 0, 1)]. We see that in this case lim−→Gα is effectively the group of integer se-

quences with finitely many non-zero terms.

With this technology we can now prove Prop. 1, that the Pontryagin map is an isomor-

phism when every prime p such that G has p-torsion, is invertible in k.

Proof. [BRO, V.6.4] We will break this proof down into three cases. First is the case that

G is cyclic. Then we see
∧p(G ⊗ k) = 0 for all p > 1, and with our p-torsion hypothesis

we get Hp(G, k) = 0 for p > 1 by our computation of Hm(Cn,M) we performed in the

Kunneth formula example, and hence our map is an isomorphism.

Now for the case that G is finitely generated, we induct. By the fundamental theorem of

finitely generated abelian groups we can induct on the number of cyclic factors of G. For

the base case that G = G1 ×G2 we can create the following commutative diagram

∧∗(G1 ⊗ k)⊗
∧∗(G2 ⊗ k)

∧∗(G⊗ k)

H∗(G1, k)⊗k H∗(G2, k) H∗(G, k)

ϕ
∼=

ψ(G1)⊗ψ(G2) ψ(G)

µ

Where µ is from the splitting of the Kunneth short exact sequence (§3.4, Thm 2), the

ψ are the extended k-algebra maps we are concerned with and the top map is from the

isomorphism
∧∗(A⊕B) ∼=

∧∗(A)⊗
∧∗(B) which in our case gives

∧∗(G1⊗k)⊗
∧∗(G2⊗k) ∼=∧∗((G1 ⊗ k)⊕ (G2 ⊗ k)) ∼=

∧∗((G1 ×G2)⊗ k) ∼=
∧∗(G⊗ k).

To see the diagram commutes we rely on the naturality of ψ. To expand upon Brown’s

justificaiton: in particular ψ is a natural transformation between the two functors F :=∧∗( · ⊗k) and K := H∗( · , k), so for any group homomorphism f : A → B we get
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ψ(B)◦F (f) = K(f)◦ψ(A). We also have inclusion maps ij :
∧∗(Gj⊗k)→

∧∗(G⊗k) for

j = 1, 2 and also fj∗ : H∗(Gj , k)→ H∗(G, k) for j = 1, 2 induced by the natural inclusions

of groups G1, G2 into G. So taking an element a⊗ b ∈
∧∗(G1 ⊗ k)⊗

∧∗(G2 ⊗ k), the two

paths of the diagram are

(ψ(G) ◦ ϕ)(a⊗ b) = ψ(G)(i1a · i2b)

= ψ(G)(i1a) · ψ(G)(i2b)

and
(µ ◦ ψ(G1)⊗ ψ(G2))(a⊗ b) = µ(ψ(G1)(a)⊗ ψ(G2)(b))

= f1∗ψ(G1)(a) · f2∗ψ(G2)(b).

Applying our naturality to the ij and fj∗ maps we see that we have fj∗ ◦ψ(Gj) = ψ(G)◦ ij
and hence the two routes of our diagram are equal.

Now by the cyclic case and our theorems hypothesis, we get that ψ(G1) and ψ(G2) are

isomorphisms, and G1 ⊗ k and G2 ⊗ k are k-free, so the Tor terms in the Kunneth short

exact sequence vanish giving µ is an isomorphism and so we get that ψ is an isomorphism.

The rest of the induction follows easily from this.

Now the final case is when G = lim−→Gα, for Gα finitely generated. Similar to above we

have a commutative diagram

lim−→
∧∗(Gα ⊗ k)

∧∗(G⊗ k)

lim−→H∗(Gα, k) H∗(G, k)

ϕ

lim−→ϕ(Gα) ψ(G)

µ

Where the bottom map comes from Gα ↪→ G inducing µ : lim−→H∗(Gα, k)
∼=−→ H∗(G, k)

[BRO, ex V.5.3]. The top map, ϕ, is and isomorphism induced by the inclusions Gα⊗k ↪→
G⊗ k [Brown, V.6.3]. Finally again, as above, by naturality of ψ the diagram commutes

and so we are done.

4 Spectral Sequences

Now we have a solid grasp of the basic tools of group homology we move onto defining

and working with spectral sequences. The motivating example of why we need spectral

sequences is in wanting to compute the homology of the total complex of the tensor product

of two chain complexes, which we shall see later in this section.
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4.1 Definition of a Spectral Sequence

[ROT, §10.2] We start first with the definition of a spectral sequence. The next few sections

then define exact couples and show how to actually obtain our spectral sequences from an

exact couple, and what it means for a spectral sequence to converge. We start with the

following definitions.

Definition 8 (ROT, pg610, pg619). A differential bigraded module is an ordered pair

(M,d) where M = (Mp,q)(p,q)∈Z×Z is a bigraded module and d is a bigraded map such that

d2 = 0.

These objects then make up our spectral sequence.

Definition 9 (ROT, pg622). A spectral sequence is a sequence of differential bigraded

modules

(Er, dr)r∈N

such that each consecutive module is related to the pervious one by

Er ∼= H(Er−1, dr−1).

We call the Er the pages of the spectral sequence and dr the differentials.

In more concrete terms, if dr−1 has bidegree (a, b) then we get

Erp,q
∼=

Ker dr−1p,q

Im dr−1p−a,q−b
.

N.B. This is the homological form of a spectral sequence, there is also a cohomological

form.

4.2 The Convergence of a Spectral Sequence

[ROT, §10.3] We now need to define the limiting behaviour as r → ∞. Intuitively the

limiting page, should be the point where moving to the next page no longer has any effects.

So naively we could make the following definition

Definition 10 (Convergence version 1). If there exists an n ∈ N such that for all r ≥ n

we have that Er = En then we call this page E∞.

However there is a more robust way that we have to define E∞. First notice that since

each Er = H(Er−1, dr−1) = Ker dr−1/ Im dr−1 we can denote the r’th page as a quotient

of objects, Er = Zr/Br using the letters Z and B from the topological notion of homology

being ‘cycles modulo boundaries’. Due to the fact that we are taking repeated quotients

as we progress from one page to the next, we see that

B2 ⊆ · · · ⊆ Br ⊆ Zr ⊆ · · · ⊆ Z2 ⊆ E1.
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These objects can then be collected together to define

Z∞ :=
⋂
r

Zr

B∞ :=
⋃
r

Br

and these let us arrive at our definition for E∞ [ROT, pg624].

Definition 11 (Convergence version 2). We define the E∞ limiting term of our spectral

sequence to be the quotient

E∞ := Z∞/B∞

Using this E∞ we can now define what it means for our spectral sequence to converge.

Definition 12 (ROT, pg626). We say our spectral sequence converges to a graded object

H∗ if there is a bounded filtration Φ of H∗ such that:

E∞p,q
∼=

ΦpHp+q

Φp−1Hp+q
,

where by a bounded filtration of H we mean that for each Hn, we can find integers m < u

(possibly dependant on n) such that 0 = ΦmHn ⊆ Φm+1Hn ⊆ · · · ⊆ ΦuHn = Hn. We

denote this as E2
p,q ⇒ Hn or E2

p,q ⇒p Hn when we want to emphasise the fact that we are

using p to control the filtration.

[ROT, lemma 10.13] Its worth noting that if the pages stabilise after a point then our naive

definition of convergence is the same as our definition that uses cycles and boundaries. To

see this first note that if there is an r such that the pages stabilise then we have Er = Er+1

meaning that Er = Zr+1/Br+1 however by definition we also have Br+1 ⊆ Zr+1 ⊆ Er, so

the only way for that equality to hold is if Br+1 = 0 but Er is itself a quotient Zr/Br and

so to be 0 in this quotient gives us Br+1 = Br. On top of this Er = Zr/Br = Er+1 =

Zr+1/Br+1 = Zr+1/Br and so that forces Zr = Zr+1 too.

Now as Er = Er+1 = Er+2 = · · · we have equality for those cycles and boundaries too

and hence for every s ≥ r due to the subquotient nature of our definitions we get

B2 ⊆ · · · ⊆ Br = · · · = Bs ⊆ Zs = · · · = Zr ⊆ · · ·Z2

and so by definition

B∞ =
⋃
n

Bn =
⋃
n≥r

Bn = Br,

and

Z∞ :=
⋂
n

Zn =
⋂
n≥r

Zr = Zr,

16



and hence

E∞ = B∞/Z∞ = Br/Zr = Er = Er+1 = · · ·

which is the point where our sequence stabilises. In the most common cases our spectral

sequence will be zero outside of a single quadrant, which along with the changing bidegree

of differentials will cause the pages to stabilise after a finite number of iterations.

4.3 Exact Couples

[ROT, §10.2] Exact couples are the main object we can use to obtain a spectral sequence.

Definition 13. An exact couple is a commutative triangle of bigraded modules, with bi-

graded module homomorphisms as below

D D

E

α

βγ

which is exact at each point, so Kerα = Im γ, Kerβ = Imα and Ker γ = Imα. We denote

our exact couple as the tuple (D,E, α, β, γ).

From an initial exact couple we can obtain a sequence of exact couples, which we will call

derived couples, and these will give us the pages for a spectral sequence.

To get our derived couple we first define a differential d1 = βγ : E → E and denote the

homology with respect to d1 as E2 := H(E, d1). We also define D2 := Im(α). We then

have a map α2 := α|D2 : D2 → D2 the restriction of the α from the original exact couple.

We also have a map β2 : D2 → E2 which is defined as follows. For every x ∈ D2 we can

find a y ∈ D such that x = α(y) by definition of Im(α). We then define β2(x) := [β(y)].

To see this is independent of the choice of y, suppose that we can find y1 6= y2 such that

x = α(y1) = α(y2). This tells us that α(y1 − y2) = 0 so y1 − y2 ∈ Ker(α) = Im(γ), so

∃z ∈ E with y1−y2 = γ(z). Applying β we see this means β(y1) = β(y2) +β ◦γ(z), which

tells us [β(y1)] = [β(y2)] ∈ E2 = H(E, β ◦ γ) so our map is well defined.

Finally we have a map γ2 : E2 → D2 that is naturally induced by γ on the homology of

E. That is, for some [z] ∈ H(E, d1), so z ∈ Ker(d1) = Ker(β ◦ γ), we have γ2([z]) := γ(z).

To see γ2 has the correct range note that z ∈ Ker(β ◦ γ) means γ(z) ∈ Ker(β) = Im(α) by

exactness, so γ2(x) = γ(z) ∈ D2 as required. To see it is well defined, suppose we had two

elements such that [x] = [y] in E2. Then that would mean x− y ∈ Im(d1) = Im(β ◦ γ), so

we can find a z ∈ E such that x − y = β(γ(z)). But then γ2([x]) − γ2([y]) = γ(x − y) =

γ(β(γ(z))) = 0 since by exactness γ ◦ β = 0. So the map induced by γ on homology is

well defined.

Which all together gives us
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D2 = Im(α) D2 = Im(α)

E2 = H(E, d1)

α2

β2γ2

All that is left to do is show exactness at each point to confirm it’s an exact couple.

The above and following calculations are my own, though analogous ones can be found

in [ROT, Prop. 10.9]. To see that we have exactness we need to show three things: (i)

Kerα2 = Im γ2, (ii) Kerβ2 = Imα2, and finally (iii) Ker γ2 = Imβ2, which we will now

proceed to do.

(i) First to see Kerα2 ⊂ Im γ2

x ∈ Kerα2 ⇒ α(x) = 0

⇒ x ∈ Kerα = Im γ

⇒ ∃y ∈ E s.t. γ(y) = x

⇒ x = γ2([y]) as y ∈ Kerβγ. [Check?]

Then to see Im γ2 ⊂ Kerα2

x ∈ Im γ2 ⇒ ∃[y] ∈ H(E, d2) s.t. γ2([y]) = γ(y) = x

⇒ x ∈ Im γ = Kerα

⇒ x ∈ Kerα2 = Kerα|D2 ⊂ Kerα.

(ii) First to see Kerβ2 ⊂ Imα2

x ∈ Kerβ2 ⇒ β2(x) = 0

⇒ ∃y ∈ D s.t. α(y) = x so β2(x) := β(y) = 0

⇒ y ∈ Kerβ = Imα

⇒ y ∈ D2 := Imα and α(y) = x so x ∈ Imα2.

Then to see Imα2 ⊂ Kerβ2

x ∈ Imα2 ⇒ ∃y ∈ Imα s.t. α2(y) := α(y) = x

⇒ x ∈ Imα = Kerβ

⇒ β2(x) = β(y) = 0.
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(iii) First to see Ker γ2 ⊂ Imβ2

[x] ∈ Ker γ2 ⇒ x ∈ Ker γ = Imβ

⇒ ∃y ∈ D s.t. β(y) = x

⇒ β2(α(y)) := [β(y)] = [x].

Then to see Imβ2 ⊂ Ker γ2

[x] ∈ Imβ2 ⇒ ∃y ∈ D2 s.t. β2(y) = [x]

⇒ ∃z ∈ D s.t. α(z) = y and β2(y) = [β(z)] = [x]

⇒γ2([x]) = γ2([β(z)]) = γ(β(z)) = 0 as β(z) ∈ Imβ = Ker γ.

Together this gives us exactness of our derived couple, so as stated we have obtained a

new exact couple (D2, E2, α2, β2, γ2) from our original exact couple.

From this we define the n’th derived couple, (Dn, En, αn, βn, γn), inductively as the derived

couple of (Dn−1, En−1, αn−1, βn−1, γn−1). As each En is defined as the homology of En−1,

we get a spectral sequence by collecting the (En, dn) from each couple. The task is now

to find some useful exact couples to work with!

4.4 The Spectral Sequence from the Filtration of a Chain Complex

This section will give a general method that we can use to obtain useful exact couples to

work with. Given a chain complex C a filtration of C is a sequence of sub-complexes F pC

such that

· · · ⊆ F p−1C ⊆ F pC ⊆ F p+1C ⊆ · · · ⊆ C.

where we also require that d(F pCn) ⊆ F pCn−1.

There is a natural way to get an exact couple from a filtration of a chain complex, using

the short exact sequence of chain complexes with the usual inclusion and quotient maps

0→ F p−1C → F pC → F pC/F p−1C → 0.

We know a short exact sequence of chain complexes gives a long exact sequence in homology

· · · → HnF
p−1C

α−→ HnF
pC

β−→ HnF
pC/F p−1C

γ−→ Hn−1F
p−1C → · · ·

with α induced by the inclusion map, β induced by the quotient map and γ the connecting

homomorphism. We can now define bigraded modules

Dp,q :=Hp+q(F
pC)

Ep,q :=Hp+q(F
pC/F p−1C)
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which give an exact couple (D,E, α, β, γ). We have exactness since our maps come from

the long exact sequence. We can see α has bidegree (1,−1), β has bidegree (0, 0) and γ

has bidegree (−1, 0). From this we can take the derived couples (Dr, Er, αr, βr, γr), with

αr of bidegree (1,−1), βr of bidegree (1 − r, r − 1), γr of bidegree (−1, 0), and at each

stage the differential dr has bidegree (−r, r − 1).

The (Er, dr) from the derived couples give us a spectral sequence. We now show that this

spectral sequence converges to the homology of C, i.e. to the graded object Hn(C). By

definition, that means we need to find a bounded filtration Φp of Hn such that E∞p,q
∼=

ΦpHp+q(C)/Φp−1Hp+q(C). To do this, I’ve combined and added details to several parts

of Rotman’s text including [ROT, Thm. 10.16], [ROT, Corollary 10.10] and [ROT, Thm.

10.14].

Lets first start by noticing that given our filtration F pC of C, then for each p we have a

natural inclusion map

ip : F pC ↪→ C

which can induce a map on homology for each n

(ip)∗ : Hn(F pC)→ Hn(C)

and this gives us a filtration of Hn(C) which we can define for each p and n as

ΦpHn(C) := Im (ip)∗

which will be bounded if our F p was a bounded filtration. So assuming F p was bounded,

we now have a bounded filtration of H∗(C) which we need to relate to E∞. To get our

hands on E∞ we will work with our filtration through the Dr terms of the derived couple.

Recall that from (D,E, α, β, γ), the r’th derived couple consists of the following

Dr Dr

Er

αr

βrγr

with exactness at each point. In particular for each p we get an exact sequence

Dr
p−2+r,q−r+2

αr−→ Dr
p−1+r,q−r+1

βr−→ Erp,q
γr−→ Dr

p−1,q

since αr has bidegree (1,−1), βr has bidegree (1 − r, r − 1) and γr has bidegree (−1, 0).
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Also note that following our definition for the Dr we can see

Dr
p,q = αr−1Dr−1

p−1,q+1

= αr−1αr−2Dr−2
p−2,q+2

= . . .

= αr−1 · · ·α2αDp−(r−1),q+(r−1)

and from our filtration we defined Dp,q := Hp+q(F
pC) and α the map induced by the

inclusion jp−1 : F p−1C ↪→ F pC. So our chain of αr is the same as chaining all these

inclusions together and then inducing the map, so we see

Dr
p,q = Im (jp−1∗ jp−2∗ · · · jp−r+1

∗ )

= Im (jp−1jp−2 · · · jp−r+1)∗ ⊆ Hp+q(F
pC).

where that composition maps Hp+q(F
p−r+1C)→ Hp+q(F

pC).

This tells us that Dr
p−1+r,q−r+1 ⊆ Hp+q(F

p−1+rC) and for large enough r we will have

F p−1+rC = C since its a bounded filtration. Because of this, the composition of inclusions

is actually equal to our previously seen inclusion map ip : F pC → C.

We can now apply this information to our exact sequence. Firstly we can say for large

r we have Dr
p+r−1,# = Im (ip)∗ =: ΦpHp+q(C) (where # denotes the second coordinate

as it doesn’t matter what it exactly is here) and similarly Dr
p−2+r,q−r+2 = Φp−1Hp+q(C).

Secondly we see that the final term in the exact sequence

Dr
p−1,q = Im (Hp−1+q(F

p−rC)→ Hp−1+q(F
p−1C))

will actually be 0 for large enough r since the boundedness of the filtration means even-

tually F p−rC = 0.

When r is large enough that both of these occur, we get pieces of the form

0→ Φp−1Hp+q(C)→ ΦpHp+q(C)→ Erp,q → 0,

and hence have that

E∞p,q = Erp,q
∼=

ΦpHp+q(C)

Φp−1Hp+q(C)
,

which by definition that gives us that

E2
p,q ⇒p Hp+q(C).

Now that we have gone through the above technicalities, given a chain complex and a

bounded filtration of that complex we can now apply the following process
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1. define an exact couple using the filtration,

2. take the derived couples of this exact couple,

3. use these derived couples to obtain the pages and differentials of a spectral sequence

which converges to the homology of the chain complex.

4.5 Maps of Exact Couples

[MAS, §5] It’s worth quickly noting how we can define a map of exact couples.

Definition 14. Given two exact couples (D,E, α, β, γ) and (F,G, α′, β′, γ′), we define a

map of exact couples as a pair of maps

(f, g) : (D,E, α, β, γ)→ (F,G, α′, β′, γ′)

such that f : D → F and g : E → G, where these maps ‘commute’ with the differentials

in the exact couples, in theh sense that

f ◦ α = α′ ◦ f

g ◦ β = β′ ◦ f

f ◦ γ = γ′ ◦ g.

These relations mean that when we take derived couples, the differentials d := β ◦ γ and

d′ := β′ ◦ γ′ will then commute with g too, since

g ◦ d = g ◦ β ◦ γ

= β′ ◦ f ◦ γ

= β′ ◦ γ′ ◦ g

= d′ ◦ g

and so its easy to take our pair (f, g) and induce maps on the derived couples, as this

commutativity means g induces a well defined map on homology, and we can restrict f to

Imα to end up with a map between the derived couples.

A map between derived couples then gives a map of spectral sequences, where by map of

spectral sequences we mean the following.

Definition 15. Suppose (Er, dr) and (F r, gr) are two spectral sequences then a map f :

E → F of spectral sequences is a collection of maps between each page f r : Er → F r that

commutes with the page maps f ◦ dr = gr ◦ f for each r, and such that f r+1 is the map

induced on homology by f r.
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4.6 Example: Spectral Sequence Collapsing to an Axis

There is a special case in which the convergence of a spectral sequence tells us more

explicitly about the object it is converging to. The following are my own calculations

and are a good way to get used to how convergence works. Suppose we have a spectral

sequence (En, dn), converging to a graded object H, and that the E∞ page ‘collapses to

the x-axis’, so in other words

E∞p,q =

Ap q = 0,

0 otherwise.

We will now explore what this specific case tells us about H. Firstly, we know that for

each n we have a bounded filtration

0 = ΦmHn ⊆ Φm+1Hn ⊆ · · · ⊆ Φu−1Hn ⊆ ΦuHn = Hn,

and also that

E∞n,0 =
ΦnHn

Φn−1Hn
= An.

We can get more information about Hn with this filtration by exploring the other terms

of E∞p,q where p+ q = n. Looking ‘above and below’ it we find for each k ≥ 1 that

E∞n+k,−k =
Φn+kHn

Φn+k−1Hn
= 0,

E∞n−k,k =
Φn−kHn

Φn−(k−1)Hn
= 0.

Which we can now chain together and make use of the boundedness property to see that

0 = ΦmHn = · · · = Φn−1Hn

and

ΦnHn = Φn+1Hn = · · · = ΦuHn = Hn.

These together tell us that

E∞n,0 =
ΦnHn

Φn−1Hn
=
Hn

0
= Hn = An

for all n. So we explicitly know that our H is made up of the non-zero terms of the E∞

page. Similar results can be deduced for the spectral sequence with E∞ made up of any

single column or row with all the other terms zero.
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4.7 The Spectral Sequence of a Double Complex

We will now show how two particular filtrations of a double complex give rise to useful

spectral sequences. For a double complex Mp,q with vertical and horizontal differentials

dv and dh respectively, satisfying (dh)2 = 0, (dv)2 = 0 and dhdv + dvdh = 0 we can create

a chain complex called the ‘total complex’.

Definition 16 (Total complex of a double complex). Given a double complex M , as above,

we define the total complex of M as the complex

Tot(M)n :=
⊕
p+q=n

Mp,q,

with differentials

dn : Tot(M)n → Tot(M)n−1

dn = dv + dh.

Example: One common occurrence of the total complex is when we have two chain

complexes C and D of R-modules, for some ring R. It is usual to define their tensor

product as

(C ⊗D)n :=
⊕
p+q=n

Cp ⊗R Dq.

However, equivalently we can define a double complex Mp,q := Cp ⊗R Dq and then see

C ⊗D = Tot(M). The homology of such a tensor product is intimately related to finding

the homology of products of spaces and products of groups which is where we start to see

how spectral sequences can come in useful.

The total complex comes equipped with two bounded filtrations which we now define using

the notation of Rotman [ROT, §10.2].

Definition 17. The first filtration of the total complex Tot(M) is the subcomplex

(IF p Tot(M))n :=
⊕
i≤p

Mi,n−i.

The second filtration of the total complex Tot(M) is the subcomplex

(IIF p Tot(M))n :=
⊕
j≤p

Mn−j,j .

We know each such filtration gives an exact couple (§4.4) and hence yields a spectral
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sequence. Associated to the first filtration we get a spectral sequence with

IE1
p,q = Hp+q

(
IF p Tot(M)
IF p−1 Tot(M)

)
= Hp+q(Mp,•[p])

= Hq(Mp,•),

where Mp,•[p] is the p’th column with indexes shifted by p and where this page comes with

differentials induced by the horizontal differentials of M . We can now chase this back one

page if we want to see that
IE0

p,q = Mp,q

using d0 as the vertical differentials of M .

From the second filtration we get a spectral sequence with

IIE1
p,q = Hp+q(

IIF pM/IIF p−1M)

= Hp+q

( ⊕
j≤pM(p+q)−j,j⊕
j≤p−1M(p+q)−j,j

)
= Hp+q(M•,p[p])

= Hq(M•,p),

and so similarly we can see that this came from 0’th page

IE0
p,q = Mq,p

except this time the d0 differentials are from the horizontal differentials of M , and then

d1 is induced by the vertical differentials of M on homology.

So the difference between the spectral sequences IE and IIE is the order we take homology

using the maps from M and we know they converge to H∗(Tot(M)). In our spectral

sequence notation we can denote this as

IE2 = HhHv(M)⇒ H∗(Tot(M))

IIE2 = HvHh(M)⇒ H∗(Tot(M))

where Hv and Hh are shorthand denoting if we took homology via the vertical, dv, or

horizontal, dh, differentials of our double complex.

[LOD, Appendix D] Its worth performing a quick analysis of the d2 differential. We know

d0 is either the vertical or horizontal differential, for the purpose of this calculation suppose

we are using the first filtration, so d0 = dv the vertical differential and d1 is induced on

homology from dh.
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Then d2 with bidegree (−2, 1) takes a little more work to understand, but we can describe

it explicitly in much the same way as one would the connecting homomorphism. Pick

some [x] ∈ E2
p,q = Ker d1p,q/ Im d1p,q, so we can represent [x] by some x ∈ E1

p,q such that

d1(x) = 0. However E1 = Ker d0/ Im d0, so we have that x is itself a class that we can

represent by some x̃ ∈ Ker d0p,q an element of the double complex.

Now note that
d1(x) = 0⇒ x ∈ Im(d0)

⇒ ∃y ∈Mp−1,q+1 s.t. dh(x̃) = dv(y)

and as dhdv + dvdh = 0 and dhdh = 0 we can then see

dvdh(y) = −dhdv(y) = −dhdh(x̃) = 0

and hence dh(y) ∈ Ker dv and so can define a class [dh(y)] ∈ E1
p−2,q+1. So lets consider

what happens when we apply d1 to this element.

d1([dh(y)]) := [dhdh(y)] = 0

so this element is also in Ker d1 and hence considering its class we get an element in

E2
p−2,q+1. Not only this but as d2 has bidegree (−2, 1) this is really the only element that

it makes sense to send our original [x] to under d2.

4.8 Example: Two Non-Zero Columns

We will now see another calculation example, which is my own work solving [WEI, Exercise

5.2.1]. Given a double complex M where our associated spectral sequence has E2 all zero

other than in the columns p = 0 and p = 1, we will work to find a useful short exact

sequence. To start, we know

E2
p,q ⇒ Hp+q(Tot(M))

and that d2 has bidegree (−2, 1) so taking homology wont change anything, and hence

E2 = E∞. So for any n we see that

E∞1,n−1 =
Φ1Hn

Φ0Hn
= E2

1,n−1,

and

E∞0,n =
Φ0Hn

Φ−1Hn
= E2

0,n.

We can then also note that for k ≥ 1 we have

E∞−k,n+k =
Φ−kHn

Φ−k−1Hn
= E2

−k,n+k = 0.
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So as before since the filtration is bounded it will eventually descend to zero and so we get

0 = · · · = Φ−2Hn = Φ−1Hn

and hence we now know Φ0Hn = E2
0,. Similarly we see again for k ≥ 1 that

E∞k,n−k =
ΦkHn

Φk−1Hn
= E2

k,n−k = 0

and by boundedness of the filtration we arrive at

Φ1Hn = Φ2Hn = · · · = Hn(Tot(M)).

Putting the two together we can see

E∞1,n−1 =
Φ1Hn

Φ0Hn
=
Hn(Tot(M))

E2
0,n

= E2
1,n−1,

and hence for each n there is a short exact sequence

0→ E2
0,n → Hn(Tot(M))→ E2

1,n−1 → 0.

We can apply this to easily derive what happens if spectral sequence collapses to the y-axis.

In this case the third term of our short exact sequence is zero so we get E2
0,n
∼= Hn(Tot(M)).

4.9 Example: Balancing Tor

Our spectral sequence tools also allow us to neatly solve a natural question that could have

arisen when we first defined the Tor functor. This can be seen in [ROT, Cor. 10.23] which

I’ve added detail to. For N a left R-module and M a right R-module we can compute

TorR(M,N) in two ways [ROT, Thm. 7.5]. We could take a flat resolution M• → M

then compute the homology of M• ⊗ N . Alternatively we could take a flat resolution

N• → N and compute the homology of M ⊗ N•. We can prove that these two methods

are equal by exploiting the two filtrations of the double complex and the fact that the

spectral sequences they yield both converge to the same object.

We start by defining the double complex Cp,q := Mp ⊗R Nq. The spectral sequence from

the first filtration of this double complex (§4.7) gives

IE0
p,q := Cp,q = Mp ⊗R Nq.

27



Computing each vertical homology we see this leads to

IE1
p,q =

Ker(Mp ⊗Nq →Mp ⊗Nq−1)

Im(Mp ⊗Nq+1 →Mp ⊗Nq)

=

Mp ⊗N q = 0,

0 otherwise,

since the resolution of N is an exact sequence. Taking the homology again, this time

horizontally we end up with

IE2
p,q =

TorRp (M•, N) q = 0,

0 otherwise.

As all other terms are zero and the differentials are now pointing out of the horizontal

line, we see E∞ = E2. Following the same steps with the second filtration we arrive at

IIE2
p,q =

TorRp (M,N•) q = 0,

0 otherwise,

which is again the E∞ page. So both sequences collapse to an axis, so the non-zero terms

are the object we are converging to. We also know that these two spectral sequences

converge to the same object and so we get that TorR(M•, N) = TorR(M,N•).

4.10 A Spectral Sequence Proof of the Kunneth Formula

[ROT, Thm. 10.90] Now we are used to making basic calculations with spectral sequences,

we can use them to derive the short exact sequence seen in the Kunneth formula (§3.4,

Thm. 2). We take as given that for two positively indexed chain complexes A and C or

R-modules we have a spectral sequence

E2
p,q =

⊕
s+t=q

TorRp (Hs(A), Ht(C))⇒ Hn(A⊗R C).

We will assume flatness of the cycles and boundaries in the homology of A.

We start with the standard exact sequence of cycles Zs and boundaries Bs,

0→ Bs → Zs → Hs(A)→ 0.

This gives us a long exact sequence in Tor that we saw in §2.1

· · · → TorRp (Bs, Ht(C))→ TorRp (Zs, Ht(C))→ TorRp (Hs(A), Ht(C))→ TorRp−1(Bs, Ht(C))→ · · · .
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The flatness of cycles and boundaries then causes the vanishing of the terms

TorRp (Bs, Ht(C)) = TorRp (Zs, Ht(C)) = 0 for p ≥ 1,

so in our long exact sequence we end up being left with

· · · → 0→ 0→ TorRp (Hs(A), Ht(C))→ 0→ · · ·

when p ≥ 1, which of course tells us that unless p = 0, 1 we have

TorRp (Hs(A), Ht(C)) = 0.

So we end up with the second page of our spectral sequence having non-zero terms in

only two columns, which is a scenario we have already analysed in more generality. As we

calculated in §4.8, for every n we have a short exact sequence

0→ E2
0,n → Hn(A⊗R C)→ E2

1,n−1 → 0.

In particular this gives us

0→
⊕
s+t=n

TorR0 (Hs(A), Ht(C))→ Hn(A⊗R C)→
⊕

s+t=n−1
TorR1 (Hs(A), Ht(C))→ 0

and we have calculated TorR0 in §2.2 so know that this becomes

0→
⊕
s+t=n

Hs(A)⊗R Ht(C)→ Hn(A⊗R C)→
⊕

s+t=n−1
TorR1 (Hs(A), Ht(C))→ 0. (1)

In particular if we take F• → Z, Q• → Z as ZG and ZG′ resolutions respectively, and note

that F• ⊗ Q• → Z is a resolution for G × G′. Then define our chains as A := (F• ⊗ k)G

and C := (Q• ⊗ k)G′ , to see equation (1) above gives the short exact sequence we wanted

for the Kunneth formula (§3.4, Thm. 2).

Note: Brown proves the kunneth formula in a very different manner, via some explicitly

constructed maps, for this version see [BRO, V.5.8]. I chose this method to showcase the

technology we have been building up. Also note that the spectral sequence we used here

comes from that of the double complex but involves defining a Cartan-Eilenberg projective

resolution first [ROT, §10.5], which would take us too far from the topic at hand.

4.11 The Hochschild-Serre Spectral Sequence

We will now describe the main spectral sequence we need for our work on Schlichting’s

paper. This spectral sequence is an example of the more general Grothendiek spectral

sequence, relating to the composition of two functors [ROT, §10.6]. We start with the
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notion of a group extension.

Definition 18. A group extension is a short exact sequence of groups

1→ N → G→ K → 1.

and we say G is an extension of K by N .

Example : We can have an extension of the cyclic group of order two

1→ D3 → D6 → C2 → 1,

or we could have an extension of the integers modulo p, by localising at at the prime ideal

〈p〉 to give us

0→ 〈p〉Z〈p〉 → Z〈p〉 → Z/pZ→ 0.

Now we can see how a group extension can provide us with a spectral sequence.

Theorem 3. Given such a group extension 0→ N → G→ K and a G-module M , there

is a spectral sequence called the Hochschild-Serre spectral sequence, given by

E2
p,q := Hp(K,Hq(N,M))⇒ Hp+q(G,M).

[BRO, §III.8.2] Note in order to define Hp(K,Hq(N,M)) we need Hq(N,M) to be a K-

module. We saw earlier (§3.3) that G acts via conjugation on Hn(N,M), and as N acts

trivially on Hn(N,M), we have a G/N action on Hn(N,M) and by our group extension

G/N ∼= K. This makes Hq(N,M) into a K-module as required.

I have now combined multiple statements from Brown’s text indlucing [BRO, §VII.5] and

[BRO, §VII.6] to derive this spectral sequence in detail. We use the spectral sequence

of a filtration of a double complex which we saw in §4.7. First let F• → Z a projective

ZG-resolution of Z. We are going to exploit the fact that

F ⊗GM = (F ⊗M)G = ((F ⊗M)N )K = (F ⊗N M)K

to compute the homology of G. We start with the chain Cq := (Fq ⊗M)N , and see by

definition Hn(G,M) = Hn(F ⊗GM) = Hn(CK). So we focus on calculating Hn(CK).

Letting L• → Z be a projective ZK-resolution, we can define the double complex L⊗K C,

in particular

(L⊗K C)p,q = Lp ⊗K Cq

= Lp ⊗ZK (Fq ⊗M)N .

We start by studying the first filtration spectral sequence of this double complex, so

E0
p,q = (L⊗ C)p,q which we can see as
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3
...

...
...

2 L0 ⊗ZK (F2 ⊗M)N L1 ⊗ZK (F2 ⊗M)N L2 ⊗ZK (F2 ⊗M)N · · ·

1 L0 ⊗ZK (F1 ⊗M)N L1 ⊗ZK (F1 ⊗M)N L2 ⊗ZK (F1 ⊗M)N · · ·

0 L0 ⊗ZK (F0 ⊗M)N L1 ⊗ZK (F0 ⊗M)N L2 ⊗ZK (F0 ⊗M)N · · ·

0 1 2

Taking homology we get to the E1 page. Now since the Li are projective and so commute

when we take homology (§2.3, Thm. 1), and recalling that Hq(C) = Hq(N,M), we arrive

at

3
...

...
...

2 L0 ⊗ZK H2(N,M) L1 ⊗ZK H2(N,M) L2 ⊗ZK H2(N,M) · · ·

1 L0 ⊗ZK H1(N,M) L1 ⊗ZK H1(N,M) L2 ⊗ZK H1(N,M) · · ·

0 L0 ⊗ZK H0(N,M) L1 ⊗ZK H0(N,M) L2 ⊗ZK H0(N,M) · · ·

0 1 2

Taking homology once more gives the terms on the second page

E2
p,q = Hp(K,Hq(N,M)).

In order to prove this converges to Hp+q(G,M), we now examine the spectral sequence

from the second filtration, E0
p,q = (L⊗ C)q,p. Taking homology we get E1

p,q = Hq(K,Cp).

Picking F to be the standard resolution (§3.2), we can focus on studying Hq(K,ZG ⊗N
M) = TorZKq (Z,ZG ⊗N M). As a K-module we see that ∃M0 such that ZG ⊗N M ∼=
IndGN ResGN (M) ∼= ZK ⊗ M0, with the latter isomorphism from [BRO, III.5.6]. Taking

P• → M0 a free resolution of M0, then ZK ⊗ P• → ZK ⊗M0 can be used to calculate

Tor. However Z ⊗K ZK ⊗ F• ∼= F• and so Tor vanishes for q > 0. So the only non-zero

terms remaining are E1
p,0 = H0(K,Cp) = (Cp)K . This means E2 collapses to the x-axis as
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Hn(CK), and both spectral sequences converge to the same object, giving

E2
p,q = Hp(K,Hq(N,M))⇒ Hp+q(CK) ∼= Hp+q(G,M).

So we have fully derived the Hochschild-Serre spectral sequence from the spectral sequences

from a double complex.

4.12 Induced Map on Hochschild-Serre

In order to understand [SCH, Prop 2.4] we need some more detail on how a morphism on

the Hochschild-Serre spectral sequence is induced by a map of the group extension. Given

a map f that is an automorphism of the short exact sequence used in the Hostchild-Serre

spectral sequence

0 N G K 0

0 N G K 0,

fKfGfN

we can induce a natural map on the spectral sequence itself. (The following is my own

calculation) We will do this by giving a map that commutes with the differentials of the

bicomplex Mp,q = EKp ⊗K (EGq ⊗M)N = EKp ⊗K (EGq ⊗N M), where EK• → Z is

our standard resolution of ZK-modules from §3.2, with differentials ∂K , and EG• → Z is

our standard resolution of ZG-modules with differentials ∂G. Such a map will will induce

a map on the total complex, and hence the filtrations of the total complex. From there

maps can be induced on the exact couple from that filtration, which is the exact couple we

obtain the Hochschild-Serre spectral sequence from. Note that this complex has horizontal

differential dh = ∂K ⊗ id⊗ id and vertical differential dv = id⊗ ∂G ⊗ id.

Our induced map EfK : EK• → EK• is a chain map, so ∂KEfK = EfK∂
K . We can

do the same to get a chain map EfG : EG• → EG•. Tensoring these together gives

EfK ⊗ EfG ⊗ id : Mp,q →Mp,q, and we see it commutes with the differentials of M by

(EfK ⊗ EfG ⊗ id) ◦ (dh) = (EfK ⊗ EfG ⊗ id) ◦ (∂K ⊗ id⊗ id)

= (EfK∂
K ⊗ EfG ⊗ id)

= (∂KEfK ⊗ EfG ⊗ id)

= (∂K ⊗ id⊗ id) ◦ (EfK ⊗ EfG ⊗ id)

=(dh) ◦ (EfK ⊗ EfG ⊗ id)

and a similar calculation shows that it commutes with dv.
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This map of M can easily extend to C := Tot(M) and then be restricted to the filtrations

F pC. Hence we get a map of the short exact sequence of chain complexes

0 F p−1C F pC F pC/F p−1C 0

0 F p−1C F pC F pC/F p−1C 0,

FFF

which induces a map of the long exact sequence in homology, and hence gives us a map of

our exact couple, which in turn gives a map on the spectral sequence as we have already

seen.

4.13 Hochschild-Serre with a Split Short Exact Sequence

There is another special case of the Hochschild-Serre spectral sequence that’s worth con-

sidering. That of when the group extension splits

0 N G K 0,r

i

(2)

where ri = id. In this case we will see that we have convergence at Hi(K) = E2
i,0 = E∞i,0.

In order to see this we make use of two Hochschild-Serre spectral sequences. We will call

the Hochschild-Serre spectral sequence from the above group extension (eqn. 2), E(G).

A second group extension

0 0 G/N G/N 0, (3)

gives a second Hochschild-Serre spectral sequence, E(G/N). We see on the E2 page that

E2
i,j(G/N) = Hi(G/N,Hj(0)). These terms are trivial so we have that E2

i,0
∼= E∞i,0. We

can now use the splitting of eqn. 2, and the fact that homology is functorial to give the

following commutative diagram

E2
i,0(G/N) E2

i,0(G) E2
i,0(G/N)

E∞i,0(G/N) E∞i,0(G) E∞i,0(G/N).

i∗ r∗

i∗ r∗

∼=∼=
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The top and bottom rows compose to the identity, and the outer two vertical maps are

isomorphisms, so we get that the middle map is an isomorphism too. This is the result

we wanted. We will see this result come in useful when we work with the proof technique

of Schlichting’s [SCH, Thm. 2.5].

5 Euler Class Paper

We can now start to work with the paper of Schlichting [SCH]. The main results of this

paper concern the area of homology stability. Homology stability has been an important

concept of study over the last few decades. Homology stability is concerned with when

in a sequence of groups G1 ⊆ G2 ⊆ · · · , does the homology Hi(Gk) become independent

of k. This information allows us to calculate the homology of groups such as GL(R) =

lim−→GLn(R). Groups like GL(R) are intimately linked to the algebraic K-theory of R.

The main result we will focus on concerns the homology stability of SL(A) for a special

type of ring A that we will define. The result is stated as

Theorem 4 (SCH, Thm. 3.12). Let A be a commutative ring with many units and n ≥ 2

an integer. Then the natural homomorphism

Hi(SLn−1(A),Z)→ Hi(SLn(A),Z)

is an isomorphism for n ≥ i+ sr(A) + 1 and surjective for n ≥ i+ sr(A), where sr(A) is

a quantity called the stable rank of A.

This theorem needs multiple technological arguments and lemmas to prove it, and it is

two of these we will focus on to see how our spectral sequences can be applied. Note: we

will not define sr(A) here as it won’t directly concern us, but [VAS] has more detail if

required.

5.1 Definitions and Notation

The underlying object that allows many of these results to occur is that of a ‘ring with

many units’.

Definition 19. Let A be a ring and m ≥ 0 an integer. We call A a ring with many units

if for all such m we can find a sequence of elements (a1, . . . , an) ⊂ Z(A) whose non-empty

partial sums are units. We will refer to such a sequence as an S(m)-sequence in A.

Example: Local ring with infinite residue fields, so in particular any field, are examples

of rings with many units.
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We will also use S(m) to refer to the commutative ring

S(m) := Z[X1, . . . , Xm][Σ−1]

where

Σ := {
∑
j∈J

Xj : ∅ 6= J ⊂ [1,m] := {1, . . . ,m}}

which has an S(m) sequence of (X1, . . . , Xm). For an S(m)-sequence (a1, . . . , am) in a

ring A and for ∅ 6= J ⊂ [1,m] we denote the partial sums as aJ :=
∑

j∈J aj and define the

elements

s(a) := −
∑

∅6=J⊂[1,m]

(−1)|J |〈aJ〉 ∈ Z[A∗].

and

st(a) := −
∑

∅6=J⊂[1,m]

(−1)|J |〈(aJ)t〉 ∈ Z[A∗].

In the particular case that A = S(m) we then will use the notation sm := s(X1, . . . , Xm)

and sm,t := st(X1, . . . , Xm), following Schlichting.

5.2 An Alternative Proof of Schlichting’s Proposition 2.4

The result of the following proposition is of vital use in [SCH]. Here I prove it using more

direct methods than the topologically focused ones used in [SCH].

Proposition 2 (SCH, Prop. 2.4). Let R be a commutative ring with S(m)-sequence

a = (a1, . . . , am). let M be an R-module. Then for all integers t, q ≥ 1 with tq < m the

integral homology groups Hq(M,Z) of M are st(a)-torsion, that is, localisation at st(a)

yields

[st(a)−1]Hq(M,Z) = 0.

Proof. We can say WLOG that R = S(m) and (a1, . . . , am) = (X1, . . . , Xm) since R

having an S(m) sequence makes R an S(m)-algebra and hence we can me M an S(m)

module, so we can work with trying to localise at st(X).

Now view M as the simplicial S(m)-module, i 7→M . Using the Dold Kan correspondence

on a projective resolution of M we get a weak equivalence of simplicial S(m)-modules

P∗ →M . The classifying space functor then yields an S(m)∗-equivariant weak equivalence

of the simplicial sets BP∗ → BM and so we have Hn(BP∗) ∼= Hn(BM). We can now use

the double complex Ci,j 7→ Z[BiPj ] to help us calculate Hn(BP∗) since

Hn(BP∗) = Hn(Tot(C)).
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In particular we can use the spectral sequence from the second filtration of this complex

E0
r,s := Z[BsPr]

with bidegree (0,−1) differentials from the alternating sums of face maps from the sim-

plicial module i 7→ BiPr. This gives us that

E1
r,s = Hs(BPr)⇒ Hr+s(Tot(C•)) ∼= Hr+s(BM).

As S(m) is flat over Z, and each Pr is projective, we get that eac Pr is torsion free, making

the Pontryagin map

ΛsZPr → Hs(BPr)

an isomorphism of S(m)∗-modules as we proved in §3.4, Prop. 1. By two technical results

[SCH, Lemma 2.2] and [SCH, Corollary 2.3] which we will admit for brevity and in order

to focus on the spectral sequence aspect of the proofs, we have that for 1 ≤ ts < m these

ΛsZPr are st(X)-torsion. We can localise the spectral sequence to get a new sequence

[st(X)−1]E1
r,s ⇒ [st(X)−1]Hr+s(Tot(C•)). In particular the localised E1 and E2 pages are

then

m
s 0 0 0 · · ·

· · · 0 · · ·

1 0 0 0 · · ·

0 Z Z Z · · ·

0 1 2 · · ·

[st(X)−1]E1

m
s 0 0 0 · · ·

· · · 0 · · ·

1 0 0 0 · · ·

0 Z 0 0 · · ·

0 1 2 · · ·

[st(X)−1]E2

We get the bottom row of [st(X)−1]E2 by noticing that the horizontal differentials in

[st(X)−1]E1
•,0 are alternating sums of the identity map and so alternate between the iden-

tity and the zero map. Therefore, for 1 ≤ tq < m the localised spectral sequence converges

to 0, so in that range [st(X)−1]Hq(Tot(C•)) = 0 as required.
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5.3 A Simplified Proof of Nesterenko and Suslin

We now reprove a result that was originally proved by Nesterenko and Suslin in [NES, Thm.

1.11], but here we present an alternate proof that adapts the techniques of Schlichting

[SCH, Thm. 2.5], in which a similar result is proved for an analogue of SLq(A) instead of

GLq(A). The SLq(A) result is more technical, especially when A is noncommutative, as

it requires defining an analogue of the determinant map to even work out what we should

mean by SLq(A). This proof can be seen as a stepping stone in understanding [SCH,

Thm. 2.5] in that the general strategy is the same but less technicalities obstruct us as

our group action is better behaved here.

In order to state our result, we first define the following

AffGLp,q (A) :=

(
GLq(A) 0

Mp,q(A) 1p

)
.

Theorem 5. Let A be an S(m)-algebra. Let q ≥ 1 an integer, then for all integers p, r ≥ 0

such that 0 ≤ r < m the inclusion

ι : GLq(A)→ AffGLp,q (A) : M 7→

(
M 0

0 1p

)

induces an isomorphism of A∗-modules

Hr(GLq(A)) ∼= Hr(Aff
GL
p,q (A))

Proof. We have the short exact sequence

0→Mp,q(A)→

(
GLqA 0

Mp,qA 1p

)
→ GLq(A)→ 1. (4)

From this we get the Hochschild-Serre spectral sequence associated to the above short

exact sequence

E2
i,j = Hi(GLqA,Hj(Mp,qA))⇒ Hi+j(Aff

GL
p,q (A)).

We want to make use of the previous proposition to see where certain parts of our spectral

sequence vanish once we localise it at the element sm,−1. In particular as A is an S(m)-

algebra, it has an S(m) sequence a := (a1, . . . , am) for ai ∈ Z(A), combinations of which

make up sm,−1 so we need to know how the a−1i act on the spectral sequence. In particular

they act as the blocksums (where diagq(x1, . . . , xn) is the q×q diagonal matrix with entries
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xi)

diagq(a
−1
i , . . . , a−1i )⊕ Ip ∈ AffGLp,q (A) by conjugation on AffGLp,q (A),

diagq(a
−1
i , . . . , a−1i ) ∈ GLq(A) by conjugation on GLq(A),

diagq(a
−1
i , . . . , a−1i )−1 ∈ GLq(A) by right multiplication on Mp,q(A),

however we already know that AffGLp,q (A) and GLq(A) act trivially on the spectral se-

quence, so sm,−1 acts trivially on the spectral sequence. Note that diagq(a
−1
i , . . . , a−1i )−1 =

diagq(ai, . . . , ai) so on Hj(Mp,q(A)) we have s−1m,−1 acting as s−1m,1 which is what allows us

to use the previous proposition §5.2 Prop. 2. Also as the ai ∈ Z(A) the conjugation action

is trivial on GLq(A).

Since this action of sm,−1 is trivial on homology we see that our localised spectral sequence

actually converges to the same homology as the original spectral sequence as

[s−1m,−1]E
2
i,j ⇒ [s−1m,−1]Hi+j(Aff

GL
p,q (A)) ∼= Hi+j(Aff

GL
p,q (A))

where we have the isomorphism due to the action being trivial. In particular we can see

what happens on the E2 page and also make use of the proposition we just proved (§5.2,

Prop 2) and also the fact that H0(Mp,qA) = Z, to get

Hi(GLqA,Hj(Mp,qA)) = [s−1m,−1]Hi(GLqA,Hj(Mp,qA))

= Hi(GLqA, [s
−1
m,1]Hj(Mp,qA))

=

Hi(GLq(A), 0) = 0 for 0 < j < m,

Hi(GLq(A),Z) for j = 0,

as on Z our action is through the augmentation map and ε(sm,1) = 1 so it acts as the

identity.

As our group extension (§5.3, eqn. 4) splits, we know from §4.13 that Hi(GLq(A),Z) =

E2
i,0 = E∞i,0. Combining our calculations we see that we end up with [s−1m,−1]E

2
i,j =

[s−1m,−1]E
∞
i,j = 0 for 0 < j < m, and [s−1m,−1]E

2
i,0 = [s−1m,−1]E

∞
i,0 = Hi(GLq(A),Z). Tak-

ing 0 ≤ r < m we can follow through the filtrations as before to see the isomorphism we

need. In particular

[s−1m,−1]E
∞
r,0
∼=

ΦrHr(Aff
GL
p,q (A))

Φr−1Hr(AffGLp,q (A))
= Hr(GLq(A))

and due to our complex being only non-zero in the first quadrant and Φ induced from the

first and second filtrations of the double complex we get

0 = Φ−1Hr(Aff
GL
p,q (A)) = · · · = Φr−1Hr(Aff

GL
p,q (A))
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and

Hr(GLq(A)) = ΦrHr(Aff
GL
p,q (A)) = Hr(Aff

GL
p,q (A))

where the isomorphism is induced by the inclusion GLq(A) ↪→ AffGLp,q (A) by the definition

(from §4.4) of our filtration Φ.

5.4 Making Use of These Results

To finish we will briefly touch on how these results are used in [SCH] to give the ho-

mology stability for SLq(A). First Schlichting makes use of the K-theoretic determinant

map to define a group called SGq(A) which is analagous to SLq(A) when A is noncom-

mutative. The SGq(A) version of §5.3 Thm. 5 gives the isomorphism Hr(SGq(A)) ∼=
[s−1m,−t]Hr(Aff

SG
p,q (A)) for a certain range of r, t,m, q [SCH, Thm. 2.5]. This is then

rephrased in the more general homological algebra context of total derived functors [SCH,

Cor. 2.6].

A specific chain complex and spectral sequence are then constructed, and it is shown

that parts of its first page are isomorphic to the homology of SGq(A) [SCH, lemma 3.3].

With some more in depth analysis of this spectral sequence Schlichting is able to conclude a

homology stability result about SGq(A) [SCH, Thm. 3.7]. Some more work is then needed

which involves showing that in a certain range SGq(A) = Eq(A), the group generated by

elementary matrices [SCH, Lemma 3.8]. Finally takingA to be commutative, the homology

stability of SLq(A) follows as a consequence of that of SGq(A) [SCH, Thm. 3.12].

6 Further Reading

There are multiple directions the reader could head in from the topics in this dissertation:

1. Further reading on spectral sequences. They have many applications not only in K-

theory but in topology, differential geometry (see [BTU]) and in algebraic geometry

to name a few. The section in [ROT] has many more examples and applications, as

does the latter half of [BRO].

2. Further reading on K-theory. This dissertation really only begins the technical work

that underpins one part of K-theory. There is a huge amount of the subject sur-

rounding the homology stability of these groups which involves a lot more interesting

and deep algebra, see [WEK].

3. Further reading on group homology. [BRO] is the standard text. It is a large and

fascinating, with much more than what we could cover here.

4. Further reading on homological algebra. [ROT] and [WEI] are both dense texts

which touch on category theory and more powerful and complex objects as well as
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the general theory of specific objects like project, injective and flat modules to name

a few.

5. Further reading of [SCH]. The paper builds using the technical results we used here

to give homology stability results about SLn(A) as well as some more general results.

Much of this requires reading from the above suggestions to understand.
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